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Low-temperature equilibrium states of ferromagnetic 
lattice systems 

Jacek Miekiszt 
Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA 

Received 21 September 1987 

Abstract. A complete description of all periodic low-temperature Gibbs states of ferromag- 
netic classical lattice gas models with a finite but arbitrary number of different particles is 
obtained. 

1. Introduction 

We investigate the low-temperature behaviour of ferromagnetic classical lattice gas 
models with a finite but arbitrary number of different particles. At each site of the 
lattice there is a variable which can take on a finite number of values. One may think 
of these as different species which can occupy the lattice sites or 21+ 1 orientations of 
a spin-f particle. The particles or spins interact through many-body potentials. A 
configuration of particles with a minimal potential energy per lattice site is called a 
ground-state configuration. In the case of models which have a finite number of 
periodic ground-state configurations and satisfy the so-called Peierls condition (the 
creation of an ‘island’ of one periodic ground-state configuration in a ‘sea’ of another 
ground-state configuration leading to an increase of energy which is greater than some 
fixed positive constant times the length of the boundary of the ‘island’) there is a 
complete theory due to Pirogov and Sinai [ 1,2] (see also the review article by Slawny 
[3]) where the phase diagram at low temperatures is obtained by perturbation of the 
zero-temperature phase diagram. In particular, the number of extrema1 periodic Gibbs 
states is equal to the number of periodic ground-state configurations. 

The goal of this paper is to describe all low-temperature periodic Gibbs states for 
a large class of systems (ferromagnetic models) with an infinite number of periodic 
ground-state configurations. We generalise the results of Holsztynski and Slawny [3-51. 
They described completely all periodic Gibbs states of translation-invariant ferromag- 
netic spin-; models. In such systems, at each site of the lattice there is a spin variable 
which can take on just two values: 1 and -1 (spin up or spin down). Many-body 
interactions generalise that of the ferromagnetic Ising’ model: all coupling constants 
are negative. 

Here we consider the following generalisation. Each site of the lattice can be 
occupied by one of the finite number of different species. To use the technique 
developed by Holsztynski and Slawny we make the set of all different particles into a 
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finite Abelian group. Although one may think of a finite cyclic group, by discussing 
an arbitrary finite Abelian group case we enlarge the family of ferromagnetic models. 
The finite products of characters of this group at different lattice sites constitute the 
bonds of interaction between particles which occupy these lattice sites. We restrict 
ourselves entirely to the ferromagnetic case, i.e. negative coupling constants. One of 
the models which fits into our scheme is the ferromagnetic Potts model with m 
components, where the group is Z,, the cyclic group of order m. The phase structures 
of general 2, models was studied recently by Frohlich and Spencer [ 6 ] .  2, models 
were also used by Gruber er a1 [7] to investigate higher-spin systems. In the case of 
a cyclic group on a simple cubic lattice the complete results as in [4] were obtained 
in [8]. The case of an arbitrary lattice is more complicated. The energy of the 
ground-state configuration can be invariant under a local change. Spin-; models on 
arbitrary lattices were investigated by Slawny [3, 51. Here we generalise his results to 
the case of a finite number of different particles. 

It is known [9-111 that to determine the periodic low-temperature Gibbs states of 
ferromagnetic systems it is enough to know the unbroken part, Y+, of the group of all 
transformations, 9, which leave the interaction invariant. In particular, the number 
of extrema1 periodic Gibbs states-pure phases-is equal to IY/9’+1 at low temperatures. 
Y can be identified with the ground-state configurations of the model so we can have 
a finite number of pure phases even in the case of an infinite number of periodic 
ground-state configurations. In fact, in two-dimensional models there is always a finite 
number of pure phases [3]. 

Here we present the explicit expression for a+, the group orthogonal to Y’, in 
terms of the bonds of the system. In § 2 we introduce the notation and describe the 
model. For a more detailed description the reader should refer to [8]. In § 3 we 
generalise the main theorem from [5] to the finite Abelian group case. It relates the 
system to its reduced version. The reduced system has the so-called decomposition 
property so 9?+ of this system is explicitly expressed in terms of its bonds: 93+ = cl A 
[ 5 , 8 ] .  Using the theorem one can find B+ for the original system. Section 4 contains 
the generalised construction of the reduced system. In 9 5 an effective method of 
reduction in certain situations is presented. Section 6 contains some examples. We 
count the pure phases in certain models which have an infinite number of periodic 
ground-state configurations. 

2. Notation and description of the model 

2.1. Conjiguration space 

By the lattice L is meant any H”-invariant discrete subset of R”. A finite Abelian group 
3 is placed at each site of the lattice. 

z = x  9 
islL 

is the configuration space of the system. 

2Z becomes a compact Abelian group with the product topology. 
For A E Z, pr(o)A = A(a) ,  U E L. If Ce is equipped with the discrete topology, then 
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is a finite volume configuration space, where 12 is any finite subset of [I and 

Ef = @ %. ( 2 . 3 )  

&= %f. (2.4) 

l C L  

We provide Ef with the discrete topology. The group dual to E is isomorphic to %,-: 

If A E E', then we write A for the corresponding element in 

2.2. interaction 

The Hamiltonian in a finite volume, H , ,  is a real, negative definite and translation 
invariant function on E,. This means that the Fourier decomposition of H, is 

where J ( B )  3 0, J (  B) = J (  B-'1 and if B, can be obtained from E ,  by a translation, 
then J ( B , )  = J ( B , ) .  The family of bonds is defined as 

%?={BEE, :  J ( B ) > O } .  ( 2 . 6 )  
We assume that there is a finite fundamental family of bonds, Bo, such that any element 
of 9 can be obtained in a unique way by a translation of an element from Bo. Let 
K ( B )  = P J ( B ) ,  where P is the inverse temperature. Sometimes we refer to K as the 
interaction of a system. 

2.3. Gibbs states 

Let e%, the identity of the group %, be placed everywhere outside A. With this as a 
boundary condition, a finite-volume Gibbs state can be constructed. It is denoted 
traditionally by p:. 

The Gibbs state p- can be constructed as a limit of p: when A += [I. p+ is a translation 
invariant state, extremal in the set of all Gibbs states and therefore mixing. 

The following definitions are standard: 

d-a subgroup of Ef generated by 9 
93 + = {A E E' : p ( a) > 0} 

Y = { A E % :  ~ ( A ) = I  for any B E B }  

Y + = { G e Y :  p&(&=&G) . p ' ( a ) = p ' ( f f )  for any A E ~ ~ } .  

( 2 . 7 a )  

( 2 . 7 6 )  

( 2 . 7 ~ )  

( 2 . 7 d )  

The number of extremal periodic Gibbs states-pure phases-is equal to lY/Y+l at 
low temperatures. Y / Y +  i s  isomorphic to the group dual to B+/d; hence'lY/Y'I = 
lB+/dl. 

2.4. Con tours 

Denote: 
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If each cyclic group is equipped with the discrete topology, then A becomes a compact 
Abelian group with the product topology. A, with the discrete topology is a locally 
compact Abelian group. Both A and A, and also 2? and 2?, are Z,[Z”]-modules, 
where Z , [ Z ” ]  is the group ring of all functions from Z ”  to 72, with a finite support. 
Two useful module homomorphisms can be constructed. Let 

Then it can be written: y ( X )  = CY E M where i ( X )  = e x p [ 2 ~ i c u ( B ) / I B 1 ] ,  so y : E + & .  

Y ( X )  = (&X))BE.d  x E 2. (2.10) 

Let now a E A, 
& ( a ) =  C Y ( B ) B  

Bc d 
(2.11) 

so E :A 2. The sum converges in the topology of 2 because the interaction is of a 
finite range. It is easy to see that both y and E are continuous module homomorphisms. 
Let r, = y ( Z f ) .  Elements of r,. are called contours. 

2.5. Bicharacters on 2 x 2’ and A x A, 

It is known that 2?, E, and A, Af are mutually dual groups. For X E %? and Y E  2, 
we have 

(x ,  Y ) =  ? ( X I  = n exp 
U €  L 

where 9 = 9, is the decomposition into cyclic groups, 
r 

E=@ E, 2, = x 9, x = c x ,  x, E Z8. 
I = 1  U S L  , = I  

Similarly for a I  E A and a2 E A’: 
(2.13) 

Proposition 2.1 

( a )  ( y ( X ) , a ) = ( X , ~ ( a ) )  where X E E ,  a e A f .  
( b )  ( a ,  y ( X ) )  = ( & ( C Y ) ,  X )  where X E 2’, CY E A. 
Let N c  A,(2,). Then 

cl N =  C1 Xn &,(Cl A” n 2’’) 
r ” , { ( f : f : . u , - , ~ , [ ~ ~ ] , f ( p ) = ~  for every perf} .  

3. Reduction 

Let (L, K ) ,  (II’, K ’ )  be two lattice systems. Namely, [I and [I’ are two lattices, K ( B )  = 
p J (  B ) ,  K ’ (  B’ )  = p J ‘ (  B ’ ) ,  where J (  B ) ,  J ’ (  B ’ )  are the coupling constants for bonds 
(characters), B and B’ respectively, and is the inverse temperature. Let 4 be a 
continuous homomorphism of %? to E” and let 6 : 2;- E’ be its dual. 4 is a morphism 
from (II, K )  to (II’, K ‘ )  if it commutes with the action of Z “  and satisfies the following 
three conditions: 

(i) $Jig’)= 
(ii) 4 yields a bijection %‘+ B such that /B’I = l$(Bf)l  and K ( r $ ( B ‘ ) )  = K ’ ( B ‘ )  for 

any B ‘ E  B’, 
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(iii) If d : A + J u ’  is the isomorphism induced by I$ (i.e. if #(a) =a‘, then 

The following theorem relates the system to its reduced version. It is a direct 
a( I$ (B’ ) )  = a’(B’)  for any B’E a’), then c$(r,) is dense in r;. 
generalisation of the corresponding theorem in [ 51. 

Theorem 3.1. Let (L, K )  and (L’, K ’ )  be two ferromagnetic lattice systems and let # 
be a morphism from (L, K )  to (L’, K ’ ) .  If the system (il’, K ‘ )  has the decomposition 
property, then 

P 
4 p +  = 
p + ( 2 )  = o if A rl ~ ( C I  

hence ~ ” ( 2 )  = p + ( # ( A ) )  for all A E A?f (3.1) 
(3.2) 

The proof of the theorem follows the corresponding one in [5] and can also be found 
in [12]. 

= 4( B’+) and equivalently Y’ = c$-’(Y’+). 
Since the system (il’, K ’ )  has the decomposition property, a+ = $(cl &’) at low tem- 
peratures. It can be proven [5] that I$ is an isomorphism between cl &’ and .P** (the 
double dual of the module &). The double dual of the inclusion map i, i** : &** + Zf, 
is injective [ 131, hence &** can be identified with its image in ZP Finally 93* = &** 
at low temperatures so the number of pure phases is equal to \&** /& I  at low 
temperatures. 

In particular, theorem 2.1 says that 

4. Construction of the reduced system 

Proposition 4.1. Let C#J:@,,~ C e + @ , t e .  3’ be a Z,[Z”]-module homomorphism. Then 
# extends to a unique continuous module homomorphism # : x , ~ ~  Ce+ x,,~, %’. 

Proot It is sufficient to consider the case of [i, il‘= Z”. The proposition follows from 
the following fact: for any finite subset A c il’ there exists a finite subset B c [I such 
that for any x E @ , , ~ ”  %, x n B = 4 we have 4 ( x )  n A = # (continuity at e Z ) ,  where 
x = { i E Z ”; x( i )  # es } ,  

Let yk E @ , , ~ ’  3, yk  = (0) .  y k ( 0 )  is the generator of 9 and k runs over all generators 
of 9 in the decomposition of Ce into cyclic groups. For a finite A c Z ”  = II’ let 

- 

B = [ a  E Z”: ( a  e,)) n A Z 4 } .  

B has the required property. 

Let (il, K )  be a lattice system. The reduction of (il, K )  can be constructed as follows. 
Let F be a finite family of generators of cl T, and let Ce’= OaEF Z1.1, where la1 is 

the order of a in A. Such a family exists since cl rf is a submodule of a finitely 
generated module A, over a Noetherian ring Z,[Zy]. 

Let %‘= x,,~” 9’ and let r] : Zi + cl T, be the Z,[Z”] homomorphism which extends 
the inclusion map { y i }  + cl T,, where yj, are from proposition 4.1. By proposition 4.1 
r ]  has a unique extension to a continuous homomorphism r] : E+ A. 

Proposition 4.2. r] (2’) = y(  2). 

B o o j  By construction v(Z’)  = cl T,. Let a = y ( X ) ,  X =I;, X , ,  X ,  E 2’ are such that 
X, n X, = 4 if i # j ,  so y ( X )  =E, y ( X , ) .  Let X i  be such that r ] ( X : )  = y ( X , ) ,  then 
v G ,  x:) = Y ( X ) .  
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;I denotes the dual map; i :A ,  + gf. Define B’ = +((Ye) ,  B E 93, a 6 ( A )  = 846 ,  A E 93 
and let %’={B’ :  B E  B}. 

The interaction K ’  on 9’ is defined by K ’ (  E’)  = K ( B )  for any B E  93. 

Proposition 4.3. The order of B’ is equal to the order of B for any B from ao. 
Proof: Obviously IB‘I divides \Bl. For s, O < s < \ B \ ,  there is X E  2Z such that 
(x, E ( s a 6 ) ) #  1. 

(x, &(scy5))=(Y(X), scyB)=(7)(x’), scy6)=(x’, s ? ( c y B ) ) = ( x ’ ,  sB’) 
where X‘E 2“ so IB’I Z s and finally IB‘I = IB/. 

Proposition 4.4. B + B‘ is a bijection of 93 onto 3‘. 

Proof: Let ; ( c y 5 , )  = i j ( c x B 2 ) ,  B, ,  B 2 e  3, then for any X ‘ E  2‘ 

(x’, = (x‘ ,  $ ( c y 6 2 ) )  

(q(x’)$ aBl)=(q(x’),  

( y ( x ) ,  = ( Y ( x ) , a 6 z )  

for any X E 2, so h l ( X )  = & ( X )  for any X E 2, hence B1 = B2. 

Proposition 4.5. r; is isomorphic to cl T 1 .  

Proof: The proposition follows from the following equalities: 

(x’ j  <(cyB))=(q(X’),  c y B ) = ( y ( x ) ,  af?)=(X, E(QB))=(X, B )  
where X E 2, X’ E 2’;. 

By the criterion from [ 5 , 8 ]  the system (a’, K ’ )  has the decomposition property. Now 
take { Y Z ) , , ~  from proposition 4.1 ( y k  for each copy of h” in a). Let { y ( y L ) ,  p,} be the 
family of generators of cl rl. The homomorphism 4 : %’+ 2) is constructed to make 
the following diagram commute: 

74 = Y. 7 7  inclusion 

q - c i r , = r ;  
v 

Let 4 : Z+ 2‘ be the extension which exists by proposition 4.1. 4 defines a reduction 
of ([I, K ) .  The inclusion 4(g f )c  2?; follows from the construction 

and hence 6 yields the bijection 3’+ 93 as needed. Obviously 4(r,) is dense in r,. 
74 = Y ? = El M ,  so $4 = E  

5. An effective method of reduction 

The process of determination of 9+ and Y+ in theorem 3.1 is non-unique. There exists 
generally no canonical choice of [I’ and 4 for constructing $(cl d’) = 93+. However, 
there is a natural reduction in the case of [I = Z “  and %=Z,, m =Ilf=, p , ,  where p ,  
are different prime numbers. We begin with the following proposition which is true 
for arbitrary m. 
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Proposition 5.1. r, is a free Z,[Z”]-module generated by one element. 

Proof: Let yo = y ( X o ) ,  where X o ( a )  = 
R # 0 ,  then Ry, = y (  R )  f 0 because y is injective when restricted to 

0, a E Z“. yo generates r f .  If R E Z,[Z”], 
[4]. 

For rn described above we have the following proposition. 

Proposition 5.2. cl r, is a free Z,[Z”]-module generated by one element. 

Proof: Let 9 3 3 , = { B , , . . . , B , } a n d f o r  l s i < j s n  

P,j = BPB, - BpB, 

where aB E A, a B ( A )  = 8B,A,  A E 93. For R E  Z,[Z”] let Z ( R ) ( a )  = - R ( a ) .  It is easy 
to see that 

yo= c ( l B l / m ) m k 3 .  
BE 8 

Now we introduce 

where D is the greatest common divisor (GCD) of 93, and D is not a zero divisor (cf 
[8]). To show that y b ~  cl r, let f~ (rf) ’ ,  then 

I(D)f(Yb) = f ( I ( D ) y b )  = f ( Y o )  = 0 

hence f( yk) = 0. Let a E cl Tr, 
” 

= c (lBll/”B, where PI E Z,[Zy] 

where P f  E Z,,[Zy]. 

, = I  

k 

p, = c (”Pf 
I=  1 

P,, E X,, so (&, a )  = 0, hence P,Z(Bj) = cZ(Bl), 1 s i < j  s n (cf [4,8]).  

hence PI= P / ( Z ( B : ) / I ( D ‘ ) ) ,  
P f ( Z ( B ; ) / Z ( D / ) ) =  P;(I(BI)/Z(D’))inZ,,[Z”] forevery l ;  1 ~ 1 s  k , so  P f =  P:= P’, 

a = i ( IB! l /d i ( m / p r ) P ’ ( I ( B f ) / I ( D ‘ ) ) c u ,  
r = l  / = I  

so 

where 
k k 

I =  1 / = I  
P -  1 (m/p , )P‘  and similarly D =  1 (rn/p,)D‘ 

4 = c (“Bf 
k 

PI, D‘, Bf E Zpl[Z”]. 
/ =  I 

It follows that cl r, is generated by y;. To see that cl r, is free let R E Z,[Z”]. RyA = 0 
means that RI(  D ) y &  = Ry, = 0,  so R = 0. 
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The main concern now is to find generators of cl T 1  in the cases of non-unique reduction. 
We discuss first the case of II = Z”, 3 = Zp2. Let d p  = {A E d: pA = 0). y “ ‘ ( X )  is a 
contour for the sBp system for a fixed choice of generators of sBp as bonds; similarly 
y p d ( X ) .  By proposition 5.2 cl rYp is generated by y d P ( X )  and cl rTd is generated by 
y p d (  Y ) ,  where X ,  Y E  x , ~ ~ ”  Z, and both modules are Z,[Z”]-modules. 

Lemma 5.3. If there is a generator y”’ (X) ,  of cl rpp, such that y ( X )  is finite, then 
cl r, is generated by y ( X )  and y ( p Y ) ,  where y (  Y )  is a generator of cl r?”. The 
coefficients can be taken from Z,[Z”]. 

ProoJ: Let y ( 2 )  be finite, so ~ “ ” ( 2 )  is finite, hence 

R E Z p [ Z Y ] .  y””2) = R y “ “ ( X )  

Now it can be proven that Z = R X +  SI + p X , ,  SI E Y ( d ) ,  X I  E ,!? [8]. Because y (  p X , )  
is finite, y p d ( X I )  is finite, so y p d ( X I )  = P y p d (  Y ) ,  where P E Z , [ Z ~ ] ,  hence XI = 
P Y + S , ,  where S , ~ 9 ( p s B ) ,  and finally Z = R X + P Y + S , + p S , ,  so y ( Z ) =  
R Y ( X ) +  P Y ( P Y ) .  

The following two propositions describe cases for which the assumption of lemma 5.3 
is satisfied. 

Proposition 5.4. If d” is reduced, then cl r, is generated by y ( X )  and y ( p Y )  as in 
lemma 5.3. 

ProoJ If dp is reduced, then cl rTP is equal to r?‘ and is generated by y”‘(Xo) ,  
where X o ( a ) =  0,  a EZ”. 

Proposition 5.5. If p d  is the principal ideal in Z,[Z”], then cl I‘, is generated by y ( X )  
and y ( p Y )  as in lemma 5.3. 

ProoJ Let p d  be generated by pA. By proposition 5 .2  there is 2 E 8? such that 
p A ( 2 )  = e x p ( 2 r i / p )  and  p A , ( z )  = 1 for any translate pA, of PA. Let X I  be such that 
y d p ( X , )  is a generator of cl r;“. There is finite A such that if B E  9, p B # O  and 
S n A = 4, then y ( X , ) ( B )  = p .  Now using the fact that r is closed we can find 2, E psP 
such that y ( X ,  +Z,)  is finite. Let X = X I  +2,. Obviously y d p ( X )  is a generator of 
ci rYF. 

6. Examples 

We compute the number of extrema1 periodic Gibbs states in several models. It will 
be convenient to use the following ‘polynomial’ notation for the bonds of the system. 
Let IL = [I, U .  . .U il, be the decomposition of IL into a sum of Z ”  lattices. Thus any 
element A E Z, = OIEL Z, will be identified with a sequence of I elements of O t s H ~  Z,; 

On the other hand, elements of OIGZpZm are identified with polynomials in the 
A = ( A , , .  . . , A , ) .  

following variables: x , ,  . . . , xu ,  x;’, . . . , x, - 1  with the coefficients in Z, and x,x;I = 1. 

Let 

B E  Q Z, B = { b , ,  . * ’ ,  b k )  B ( b , )  = B, b , = ( b f ,  . . . ,  b : ) E Z ”  
I E Z ”  
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then we can write: 

B =  B, fi x:. 
, = I  , = I  

In all the examples below, Z4 is placed at each site of the square lattice. Several 
examples with spin-4 on general Z"-invariant lattices were discussed by Slawny in [ 5 ] .  
From now on Y denotes x ,  and y denotes x 2 .  

Example6.1. B , , = { B , ,  B 2 ,  BY',  Bil} ,where  B , = 2 + 2 x ,  B , = l + x + y + x v .  2.d isgen-  
erated by 2+2x+2y+2xy so the system is not reduced. d2 is generated by 2+2x. 
cl r:2 is generated by y " ' ( Z ) ,  where 

I X z = 1 x*n + 3  1 xZ11-I. 

n n  n = ,  

cl r:" is generateo 4v y z d (  W), where 

w =  x"y". 
n,m=O 

By lemma 5.3 cl r, is generated by y ( Z )  and y ( 2  W ) .  

elements. Z4 is placed on one Z2 sublattice, Z, on the other. 
The lattice of the reduced system has a fundamental family which consists of two 

New bonds can be obtained by the method described in 0 3: 

B {  = ( 2 , O )  B ; = ( l + y ,  1 ) .  

The (L', K ' )  system is reduced, hence %'+ = cl d'. It is easy to see that cl d'= d': 
g i j T = $ ( g y - ) = & . d r ) = . d  

hence at low temperatures there is a unique periodic Gibbs state. 

Example 6.2. BO = { B ,  , B 2 ,  B3 ,  BT', B;' ,  By'},  where B ,  = 1 + x ,  B2 = 1 + 3x, B3 = 
2 + 2y. 

2.d is generated by 2+2x so the system is not reduced. d 2  is generated by 2 so 
.d2 is reduced. cl ry2 is generated by y "'( 1 )  and cl I';d is generated by y ( Z ) ,  where 
Z = x".  cl Tr i s  generated by y (  1 )  and y ( 2 Z ) .  Again, in the reduced system we 
have Z, on one Z' sublattice and Z, on the other: 

B { = ( l + x ,  1 )  B ;=(1+3x ,  1 )  Bj = (2+2y, 0 ) .  

%'+ is generated by ( 2 , O )  and (1 + x ,  1 ) :  

0 ) )  = 2 & ( l + X ,  1 ) ) =  l + x  

hence %+ = si', so there is a unique periodic Gibbs state at low temperatures. The 
reason is that .d can be generated by B ,  and B 2 ,  so the system is essentially one 
dimensional. 

Example 6.3. !Bo = { B ,  , B 2 ,  B; ' ,  B;'},  where B ,  = 1 + x + y' f xy', B2 = 1 + x'+ y + x'y. 
2.d is generated by 2 + 2x  + 2y2 + 2xy' and 2 + 2x' + 2y + 2x2y. 
c c ~ [ ( 1 / 2 ) 2 d ]  = 1 + x + y + x y  so the system is not reduced. d2 is generated by 

2 + 2x'y*, 2x2 + 2y2, 2x + 2y + 2x2y + 2xy2, 2x + 2y2 + 2xy' + 2x2y2,  2 + 2y + 2x2y + 2y*. 
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G C D [ ( ~ / ~ ) & ~ ]  = 1 so d2 is reduced. cl r:.' is generated by y Z d (  w ) ,  where 

w =  x n y m .  
n.m=O 

cl rf is generated by y(1) and y ( 2 w ) .  In the reduced system 12, is on the Z2 sublattice 
and h2 on the other: 

B ;  = ( 1  + x - l  + y - 2 + x - y 2 ,  1 + y )  

B;  = (1 + x-2 + y - I  + x - * y - ' ,  1 + x ) .  

%'+ is generated by B ; ,  BS and (2,O). $ ( ( 2 , 0 ) )  = 2. 

periodic Gibbs states at low temperatures. 
After some algebra it can be shown that l%+/&l= 249, so there are 249 extrema1 
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